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Abstract
Chiari malformation type I (CMI) is a congenital neurological disorder characterized by the herniation of the cerebellar ton-
sils through the foramen magnum, which impairs cerebrospinal fluid circulation at the craniocervical junction. The primary 
hypothesis regarding its pathogenesis involves a mismatch between the posterior cranial fossa volume and the developing 
nervous tissue, leading to crowding and subsequent herniation. CMI presents a wide range of clinical manifestations, includ-
ing cerebrospinal fluid-related symptoms, brainstem and cranial nerve compression, and spinal cord dysfunction, typically 
diagnosed through magnetic resonance imaging. The surgical treatment of adult CMI remains controversial due to its hetero-
geneous manifestations and the lack of standardized surgical protocols. Posterior fossa decompression (PFD), with or without 
duraplasty (hereinafter referred to as PFDD), remains the most common intervention. In this review, we focus on the following 
aspects to provide an overview of the current surgical strategies: 1. Surgical indications; 2. The extent of bony decompression 
in PFD; 3. Choosing between PFD, PFDD, and the dura-splitting technique; 4. Atlantoaxial fixation; 5. Techniques for intradural 
procedures; 6. Timing and approach for syrinx shunting. Additionally, emerging surgical innovations, such as endoscopic 
techniques, offer promising avenues for treatment.
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Introduction
Chiari malformation type I (CMI) is a heterogeneous condition 
characterized by the herniation of the cerebellar tonsils through the 
foramen magnum (usually more than 5 mm) at the craniocervical 
junction, which is accompanied by a range of nervous and bony 
malformations, including basilar invagination, atlanto-occipital 
fusion, and syringomyelia, etc.1–3 As our understanding of Chi-
ari malformation has improved, differences in how these condi-
tions are defined have become more apparent.4 The classic CMI 
definition typically involves the caudal displacement of the cer-
ebellar tonsils, distinguishing it from Chiari malformation type 
II, where the cerebellum, fourth ventricle, and brainstem are dis-
placed downward with a high incidence of myelomeningocele.2,4 
A variant known as Chiari Malformation Type 1.5 is characterized 

by the downward displacement of both the cerebellar tonsils and 
brainstem, without the presence of myelomeningocele.5 CMI dis-
cussed in this review includes the classic type and type 1.5 and 
excludes secondary causes such as intracranial tumors, hydroceph-
alus, intracranial hematomas, cranial trauma, or iatrogenic factors. 
Moreover, due to differences in etiology, symptoms, surgical deci-
sion-making, and operative techniques between adult and pediatric 
CMI, this review focuses specifically on adult CMI.

The prevalence of CMI in the general population is estimated 
to be between 0.24% and 3.5%, with a slightly higher prevalence 
in women.3,6,7 The main pathological characteristic of CMI is the 
disruption of cerebrospinal fluid (CSF) circulation around the 
craniocervical junction or out of the fourth ventricle. The failure 
of CSF pulsations to effectively dissipate into the spinal subarach-
noid space is believed to play a critical role in the development 
of syrinx formation.8,9 Although the pathogenesis of CMI remains 
unclear, the dominant theory indicated that the discrepancy be-
tween the occipital bone and nervous tissue leads to crowding of 
the posterior cranial fossa, pushing the cerebellar tonsils down-
ward into the spinal canal and obstructing normal CSF flow.10,11 
Recent research has suggested that variants in collagen genes, in-
cluding COL7A1, COL6A5, COL1A2, and COL5A2, might also 
contribute to CMI.12

Surgery is the main treatment for CMI (the indications are dis-
cussed later). However, due to the diverse clinical manifestations 
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and poorly understood pathogenesis, the surgical approaches for 
CMI vary significantly, with different neurosurgeons adhering 
to their preferences. The choice of surgical method in different 
medical institutions often leans towards their habitual practices or 
experiences.2 In this review, we will summarize our current un-
derstanding of CMI and focus on the clinical presentation, natural 
history, treatment methods, surgical indications, diverse surgical 
techniques, and prognosis.

Clinical presentation and imaging in CMI
The majority of CM-I patients are asymptomatic. In patients who 
do exhibit symptoms, the onset is often insidious, with an array of 
initial symptoms that can vary significantly between individuals.13 
In adults, the typical presenting symptom is pain or headache in the 
occipital and cervical regions, which can be exacerbated by Vals-
alva maneuvers, coughing, sneezing, or laughing.14,15 Overall, the 
symptoms of CMI can generally be categorized into three groups:
1. CSF-related symptoms: Typical symptoms associated with im-

paired CSF flow include Valsalva-induced occipital or upper 
cervical pain/headache;

2. Compression of the brainstem, cerebellum, or cranial nerves: 
These symptoms include swallowing difficulty, choking, aspi-
ration, dysphagia, central sleep apnea, nystagmus, tinnitus, and 
others. Neurological symptoms also include vertigo, autonomic 
dysfunction, and cranial nerve impairments such as trigeminal 
neuralgia or palatal weakness;

3. Spinal cord dysfunction (Syringomyelia): These symptoms pri-
marily relate to dysfunction in the spinal cord, including mo-
tor and sensory disturbances. Common manifestations include 
sensory loss, motor weakness, scoliosis, spasticity, and upper or 
lower motor neuron signs.
The gold standard for CMI evaluation is magnetic resonance 

imaging (MRI), which helps in identifying the descent of cer-
ebellar tonsils and associated conditions like syringomyelia.16,17 
Standard MRI focuses on assessing the distance between the cer-
ebellar tonsils and the foramen magnum. Generally, a descent 
greater than 5 mm is considered indicative of CMI (Typical MRI 

scans refer to Fig. 1). The PB-C2 line is another important imag-
ing measure in CMI, offering insights into ventral compression 
of the brainstem.18–20 The PB-C2 line assesses the maximum dis-
tance from the odontoid process to the line from the basion to the 
posterior and inferior C2 vertebral body. According to published 
data, patients with a PB-C2 distance of 3 mm or greater had bet-
ter outcomes in terms of symptom resolution and syringomyelia 
reduction after decompression surgery compared to those with 
smaller measurements.21 Grabb et al.20 proposed that patients 
with a PB-C2 measurement greater than 9 mm may require ad-
ditional ventral decompression, as standard posterior decompres-
sion alone might not suffice.

Beyond conventional MRI, advanced imaging techniques like 
cine flow MRI (cfMRI) have gained popularity for their ability 
to assess CSF dynamics in CMI patients.22,23 cfMRI is used to 
visualize and assess CSF flow and potential obstructions in the 
craniocervical junction.22,23 Research by Wang and colleagues 
showed that preoperative cfMRI findings, such as CSF peak ve-
locity greater than 2.63 cm/s, were predictive of favorable sur-
gical outcomes, including symptom relief following posterior 
fossa decompression.23 This suggests that cfMRI may be a useful 
non-invasive tool to evaluate the necessity of surgery for CMI, 
although care must be taken with its interpretation, particularly 
for patients with moderate CSF dysfunction, given variability in 
data across studies.

In addition, diffusion tensor imaging has been used to assess 
the integrity of white matter tracts in the brainstem of CMI pa-
tients.24,25 Increased fractional anisotropy in CMI patients com-
pared to non-CMI patients points to white matter abnormalities, 
which may improve after decompression surgery.24,25 Diffusion 
tensor imaging, alongside cfMRI and standard MRI, provides 
valuable information on the structural and functional disturbances 
seen in CMI, thereby guiding both diagnosis and surgical planning.

Moreover, computed tomography and X-ray are valuable for 
assessing cranial base and spinal abnormalities in CMI. These im-
aging modalities help identify features like basilar invagination, 
posterior fossa volume measurement, and bony abnormalities at 
the craniovertebral junction, which are important for evaluating 

Fig. 1. Typical magnetic resonance imaging (MRI) findings of Chiari malformation type I. (a) Cerebellar tonsillar herniation accompanied by a syrinx at the 
high cervical spinal cord level. (b) A long-segment syrinx in the cervicothoracic spinal cord. (c) Associated scoliosis.
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the craniocervical junction stability and anterior compression.26,27 
Taken together, these various imaging modalities offer a combi-
nation of anatomical, functional, and physiological information, 
which is essential for understanding the complex pathophysiology 
of CMI. Their appropriate application, considering both clinical 
context and individual characteristics, guides surgical decision-
making.

The natural history and conservative treatment of CMI
With the increasing prevalence of MRI examinations, the inci-
dence of CMI has been on the rise, leading to more diagnoses in 
patients who are either asymptomatic or have nonspecific symp-
toms. Strahle et al.28 reported on 147 CMI patients (mean follow-
up of 4.6 years), where 133 patients had mild symptoms and only 
14 underwent surgery due to symptom worsening. Novegno et 
al.13 followed up with 22 CMI patients at their medical center 
who were temporarily treated conservatively (average follow-
up of 5.9 years). Of these, 17 patients (77.3%) showed symptom 
improvement, while five patients (22.7%) experienced worsen-
ing symptoms, and three eventually required surgery.13 In 2017, 
Langridge et al.29 performed a systematic review to evaluate the 
natural history and conservative management of CMI. The authors 
revealed that 93.3% of asymptomatic CMI individuals remained 
asymptomatic, while a significant portion of symptomatic patients 
improved without surgery, especially those with headaches or nau-
sea.29

According to the systematic review and evidence-based guide-
lines, it is recommended not to perform prophylactic surgery on 
patients with asymptomatic CMI without syrinx (recommenda-
tion strength grade C, level III evidence).30 A small percentage of 
patients develop new or worsening symptoms during follow-up.30 
Thus, for patients with mild or minimal symptoms, conservative 
treatment with follow-up observation may be more appropriate. 
However, if patients experience progressive worsening of symp-
toms or present with a large syrinx during follow-up, surgical in-
tervention should be considered.

Surgery indications
Posterior fossa decompression (PFD) alone or with duraplasty 
(PFDD) is frequently performed as a first-line surgical intervention 
to restore cerebrospinal fluid flow and alleviate symptoms.31–33 
Early surgical intervention in children with clear indications is rec-
ommended to minimize irreversible spinal cord damage and opti-
mize surgical prognosis.

Based on the recent review of surgical guidelines for CMI, sur-
gical intervention is generally indicated in the following circum-
stances31–33:
1. Patients with symptomatic CMI who fail conservative manage-

ment or whose symptoms are worsening. This includes per-
sistent headaches, neurological deficits, or other debilitating 
symptoms that do not respond to conservative treatment;

2. The presence of syringomyelia, significant cerebellar tonsil-
lar descent, scoliosis, or other comorbidities like spinal cord 
compression, which suggest the risk of progressive neurologi-
cal deterioration. In such cases, decompression surgery, with or 
without duraplasty, is often considered beneficial;

3. Craniocervical instability (e.g., basilar invagination, etc.) may 
require atlantoaxial or occipitocervical fixation with or without 
decompression to stabilize the region and prevent further neu-
rological damage.

Surgical strategies for CMI
Due to the inherent structural abnormalities of CMI, surgery re-
mains the primary intervention in patients with clear indications, 
as discussed above. Although various surgical techniques and 
their modifications are applied to CMI patients, most neurosur-
gical centers choose PFD alone or PFDD as the first surgery for 
CMI patients.31–33 The primary aim of surgery is to relieve bony 
compression and effectively restore CSF flow at the craniocervi-
cal junction.34 Arnautovic et al.35 reviewed 145 English studies on 
CMI surgery published between 1963 and 2013, showing that 134 
studies (92%) used PFD or PFDD for treatment. Studies report that 
94–97% of CMI patients experienced symptom relief after PFD or 
PFDD surgery.35,36 Long-term follow-up studies of CMI patients 
who underwent PFD or PFDD showed that over 90% of patients 
had stable or improved imaging and clinical symptoms after sur-
gery.37,38 Dr. Williams also proposed that PFDD with a sutureless 
dural graft could achieve a comparable clinical outcome to tradi-
tional PFDD with watertight suturing.39 Other literature points out 
that precise removal of the C1 posterior arch can prevent sharp 
angulation between the posterior dura mater of the cervical spine 
and the decompressed dura mater, which is crucial for improving 
CSF circulation in the foramen magnum area.40

Due to the complexity of the pathogenesis and varied presenta-
tion of CMI, the standard surgical treatment remains controversial. 
In the following sections, we will focus on the following aspects 
for a comprehensive view of its surgical strategy: 1. The extent 
of bony decompression in PFD; 2. Choosing between PFD and 
PFDD; 3. The need for atlantoaxial fixation; 4. Techniques for in-
tradural procedures; 5. Timing and approach for syrinx shunting; 
6. Innovative advancements in surgical techniques.

The extent of bony decompression in PFD
The extent of bony decompression in PFD for CMI is a key aspect 
of the surgical strategy and remains a topic of considerable dis-
cussion. PFDD involves two major decompression components: 
decompression of the lower occipital bone and the removal of the 
C1 lamina. Currently, there is relative consensus regarding C1 
decompression, with the standard practice being the removal of 
approximately 1.5–2 cm of the C1 lamina, depending on the ex-
tent of cerebellar tonsil herniation. However, opinions differ on 
the ideal amount of occipital bone that should be removed. In ear-
lier research, some scholars proposed a more aggressive approach 
with extensive resection, extending superiorly to the transverse 
sinuses and laterally to the sigmoid sinuses, which theoretically 
creates greater space for the posterior fossa and alleviates crowd-
ing. However, aggressive decompression can increase the risk of 
complications. Klekamp et al.41 reported that extensive posterior 
fossa decompression led to complications such as cerebellar sag-
ging, while standard posterior fossa decompression provided bet-
ter clinical outcomes. Later, Sindou et al.42 described an expanded 
occipital foramen decompression technique, extending from one 
occipital condyle to the other, allowing for both posterior and lat-
eral decompression. This method offers equivalent therapeutic ef-
fects to standard PFD but does not show significant advantages, 
and due to the need to expose both vertebral arteries, there is an 
increased risk of damaging major arteries during surgery, limiting 
its application.42

In recent studies, opinion favors small-bone-window decom-
pression (around 3 cm), which aims to minimize bone removal 
to only what is necessary for adequate CSF flow restoration, thus 
reducing the potential for complications. The existing literature 
has shown that limited decompression, involving around 2–3 cm 
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of occipital bone along with C1 laminectomy, provides effective 
symptom relief while minimizing surgical risks.34,43 According to 
our center’s experience, we prefer performing limited bone win-
dow decompression, which helps to prevent symptom recurrence 
caused by postoperative cerebellar sagging.34 The presented case 
involved revision surgery for a CMI patient who had undergone 
extensive decompression before and experienced symptom recur-
rence one year post-surgery. Preoperative MRI showed cerebellar 
descent with compression at the foramen magnum. To elevate the 
position of the cerebellum, we performed cranial reconstruction 
with occipital bone reshaping to support the cerebellum, resulting 
in symptom relief for the patient (Fig. 2).

The choice between PFD, PFDD and dura-splitting techniques
PFD or PFDD is a crucial decision for treating CMI. PFD involves 
removing bone from the posterior fossa, enlarging the space and 
improving CSF flow at the craniovertebral junction.44,45 However, 
PFDD goes a step further by opening the dura and adding a du-
ral graft to create additional space and reduce pressure.44,45 The 
choice between these two procedures depends on various clinical 
factors, such as symptom severity, the presence of syringomyelia, 
and the surgeon’s specific expertise. Current studies illustrate the 
benefits and limitations of both approaches. Research has shown 
that PFDD is more effective than PFD in reducing symptoms such 
as headaches and improving syringomyelia, primarily due to better 
decompression of neural structures and restoration of CSF flow.46 
However, PFDD carries increased risks, such as cerebrospinal flu-
id leaks, infections, and pseudo-meningocele formation.46 In 2018, 
Chai et al.47 conducted a meta-analysis and systematic review in-
volving 3,666 CMI patients, comparing PFDD vs. PFD. It found 
that PFDD was more effective than PFD in reducing syringomy-
elia, with a relative risk of 1.57. However, it also carries higher 
risks of complications, such as CSF leaks and aseptic meningitis.47 
Another systematic review and meta-analysis emphasized that the 
decision to use PFD or PFDD often depends on the surgeon’s ex-

perience with each procedure and the specific clinical scenario. 
PFDD is generally recommended for patients with syringomyelia, 
as it offers a higher rate of syrinx resolution. In contrast, PFD may 
suffice for cases without a syrinx, as it is less invasive and car-
ries lower complication risks.48 Moreover, a large population study 
using the Park-Reeves Syringomyelia Research Consortium data-
base showed that PFDD provides better clinical outcomes for CMI 
patients with syringomyelia, particularly in reducing syrinx size 
and improving symptoms like headaches. However, it also noted 
higher incidences of CSF-related complications, such as CSF leaks 
and pseudo-meningocele formation.49

In 1993, Isu et al.50 proposed a novel dura-splitting technique 
to overcome the insufficient decompression seen with PFD, par-
ticularly in CMI with syringomyelia. The dura-splitting technique 
involves splitting the inner and outer dura at the foramen mag-
num, removing the outer dural layer while maintaining the inner 
layer intact.50–53 By preserving the integrity of the inner dura layer, 
this technique lowers the risk of CSF leakage and related com-
plications. In comparison with PFDD, which involves duraplasty, 
arachnoid dissection, and manipulation of the herniated tonsils, the 
dura-splitting technique is less invasive.53 Studies have shown that 
while PFDD provides more thorough decompression and signifi-
cantly improves long-term symptom relief and syrinx reduction, 
it is also associated with a higher complication rate.53 In a study 
by Geng et al.,52 PFDD demonstrated superior outcomes in terms 
of long-term syrinx reduction (8.09 ± 3.46 vs 5.73 ± 3.02 mm in 
diameter) and symptom improvement (75% vs. 47%) compared 
to dura-splitting. However, complication rates were significantly 
higher in the PFDD group, with CSF leakage and meningitis re-
ported in 31.25% of cases, whereas no complications were report-
ed in the dura-splitting group.52 A recent meta-analysis of PFDD 
and dura splitting, which included ten studies with 370 patients, 
found fewer CSF-related complications, shorter hospital stays, and 
less blood loss in the dura-splitting group, with comparable clinical 
and radiologic outcomes to PFDD.53 Thus, the dura-splitting tech-

Fig. 2. Revision surgery for extended bony removal of posterior fossa decompression. A 50-year-old female Chiari malformation type I (CMI) patient under-
went extensive decompression and experienced symptom recurrence one year after surgery. (a) Preoperative magnetic resonance imaging (MRI) showed 
cerebellar descent with compression at the foramen magnum and recurrence of syrinx. (b) Postoperative computed tomography (CT) scans demonstrated 
cranial reconstruction with occipital bone reshaping to support the cerebellum.
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nique may serve as an attractive alternative for selected patients, 
particularly those at higher risk of complications from duraplasty 
and syringomyelia. However, these studies should be interpreted 
with caution, as they are relatively limited and lack high-quality 
randomized controlled trials.

Taken together, controversies remain regarding PFD, PFDD, 
and dura-splitting techniques. To compare the three surgical tech-
niques, we summarized recent systematic reviews and meta-analy-
ses with their key findings in Table 1. In general, regarding clinical 
relief, radiological improvement, and reoperation rates, PFDD is 
superior to dura-splitting, and dura-splitting is superior to PFD. In 
terms of complications, CSF-related complications are significant-
ly higher with PFDD compared to dura-splitting and PFD. In terms 
of hospital stay, surgery duration, and intraoperative blood loss, 
PFDD exceeds dura-splitting and PFD significantly.45,47,48,51,53–57 
Thus, the decision among these three techniques may depend on 
individual pathology, surgeon experience, and potential complica-
tion risks. In our clinical practice, for CMI with syringomyelia, 
we perform PFDD as the first-line treatment. This preference is 

primarily due to the complex etiology of CMI, which may include 
factors such as previous intracranial hemorrhage or meningitis. 
Even with advanced imaging techniques like cfMRI, it remains 
challenging to accurately assess arachnoid adhesions involving the 
cerebellar tonsils and the fourth ventricular outlets, making intra-
dural manipulation crucial for restoring CSF circulation. Figure 3 
illustrates intraoperative images from a revision surgery of a CMI 
patient with syringomyelia, who did not achieve symptom relief 
after an initial PFD. The adhesions found at the fourth ventricular 
outlet were identified as the cause of syrinx recurrence and the 
need for reoperation. Moreover, with proficiency in dura repair 
materials and microsurgical suturing techniques, the rate of CSF 
leakage following duraplasty using autologous fascia or suturable 
dural substitutes is not particularly high, and most CSF leaks can 
be managed conservatively.

Atlantoaxial fixation—Dr. Goel’s approach
Based on the hypothesis that atlantoaxial instability is the primary 
initiating factor of Chiari malformation, Dr. Goel performed at-

Table 1.  Summary of the systematic review and meta-analysis regarding the surgical treatment of CMI

Ref. Year Studies Patients Key findings

PFDD vs PFD

Förander 
et al.54

2014 12 432 There is a higher re-operation rate in PFD, but clinical improvement is not higher than PFDD

Xu et al.45 2017 12 841 There is a significant difference in the operative time in favor of PFD compared with PFDD. 
There is a significant difference in overall complication rates and CSF leak rates in favor of 
PFD groups. However, there is a significantly higher improvement rate in favor of the PFDD

Lin et al.48 2018 13 3,481 Compared with PFD, PFDD led to a greater increase in operative time, a higher likelihood 
of clinical improvement in patients with syringomyelia, no increase of clinical improvement 
in patients without syringomyelia, but an increased rate of CSF-related complication, and a 
decreased likelihood of recurrence rate

de Oliveira 
Sousa et 
al.55

2018 27 1,352 All posterior fossa decompression techniques were very successful. The success rate with PFD 
techniques was 0.76 versus 0.81 in PFDD technique and 0.83 in PFDD with intra-arachnoidal 
techniques. The main complication was CSF leak, most common in patients with PFDD with 
intra-arachnoidal techniques. The overall mortality rate was 1%

Chai et al.47 2018 14 3,666 This study showed that the decrease in syringomyelia was better for patients with PFDD than 
PFD alone. The risk of CSF-related complications was higher in PFDD. No significant difference 
was found in the clinical improvement and the reoperation rate between PFDD and PFD

Tam et al.56 2021 17 3,618 PFDD is associated with better clinical outcomes but has a higher complication rate. In adults, 
clinical outcomes differences between PFDD and PFD did not reach statistical significance, but 
re-operation rates were higher with PFD. Patients with a syrinx did better with PFDD

Chenghua 
et al.57

2021 9 497 PFDD was related to a lower revision rate but a higher complication rate. No significant 
difference was noted between PFD and PFDD in terms of overall symptom improvement or 
syringomyelia reduction

PFDD vs Dura-splitting

Tavallaii 
et al.53

2021 10 370 The study revealed significantly shorter operation duration and less intraoperative blood 
loss in the dura-splitting technique compared to PFDD. There was no significant difference 
between these two techniques in terms of clinical and radiological outcomes. Overall 
complication rate and incidence of CSF-related complications were significantly in favor of the 
dura-splitting technique

Tavallaii 
et al.51

2023 8 615 The findings revealed the significant advantage of the dura-splitting technique in terms of 
shorter operation duration and hospital stay. The recurrence rate and clinical and radiological 
outcomes were almost similar between the two surgical techniques. Complication rates were 
significantly lower in the dura-splitting technique

CMI, Chiari malformation type I; CSF, cerebrospinal fluid; PFD, posterior fossa decompression; PFDD, posterior fossa decompression with duraplasty.
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lantoaxial fixation to treat CMI.58,59 Unlike the conventional view 
that Chiari malformation results from abnormal posterior cranial 
development, Dr. Goel’s hypothesis emphasizes CMI as a condi-
tion stemming from instability at the craniocervical junction.58,59 
He argues that this instability causes herniation of the cerebellar 
tonsils, and that stabilization of the atlantoaxial joint can reverse 
this pathology.60

In a recent study published in 2023, Dr. Goel reviewed his publi-
cations and updated clinical material obtained over the last 12 years, 
involving 393 patients with central or axial atlantoaxial dislocation, 
367 of whom presented with Chiari malformation, many of whom 
also had syringomyelia.60 He applied atlantoaxial fixation in all cas-
es, and significant improvements were observed in symptoms such 
as neck pain, paresthesia, and motor weakness. Furthermore, Dr. 
Goel found that atlantoaxial stabilization was effective in resolving 
syringomyelia in CMI patients (85%). His approach challenges the 
conventional need for decompression and suggests that stabilization 
of the craniovertebral junction could resolve symptoms more effec-
tively and with fewer surgical complications.60

However, Dr. Goel’s approach remains highly controversial 

globally.61–63 After reviewing Dr. Goel’s publications, it is evident 
that many of the cases he described might involve concomitant 
craniovertebral junction bony anomalies, such as basilar invagina-
tion, while some cases feature cerebellar tonsillar herniation of less 
than 5 mm, which does not meet the criteria for diagnosing CMI. 
Concerns raised by other colleagues focus on the validity of atlan-
toaxial instability as the initiating factor for Chiari malformation 
and the appropriateness of fixation in the absence of basilar invagi-
nation.61,63 Additionally, critics question whether there is sufficient 
evidence to justify the use of atlantoaxial fixation over traditional 
posterior fossa decompression, especially considering the reported 
cases of spontaneous syringomyelia regression following decom-
pression surgery.61,63 There have also been arguments regarding 
the uniform application of atlantoaxial fixation for all congenital 
craniovertebral malformations, given the wide variation in clinical 
presentations and anatomical structures among patients.61,63

Techniques for intradural procedures
There is still debate over whether arachnoid dissection should be 

Fig. 3. Representative case for posterior fossa decompression with duraplasty. A 61-year-old female Chiari malformation type I (CMI) patient underwent 
posterior fossa bony decompression surgery 14 years ago. Postoperatively, the syringomyelia showed no significant improvement and repeated rehabilita-
tion treatments were ineffective. Over the past year, symptoms worsened, leading to an inability to walk. (a) Before revision surgery, magnetic resonance 
imaging (MRI) showed cerebellar tonsillar herniation with recurrence of a large syrinx at the cervical level. (b) Cine flow MRI indicated cerebrospinal fluid 
(CSF) obstruction around the posterior foramen magnum. (c) Postoperative MRI demonstrated relief of the syrinx at the cervical level. (d) The intraoperative 
image showed extensive adhesions (black arrows) around the cerebellar tonsils and the outlet of the fourth ventricle. (e) The intraoperative image showed 
arachnoid dissection and opening of the outlet of the fourth ventricle (black star).
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performed in PFDD. Some studies suggest that arachnoid dissec-
tion is beneficial for removing local arachnoid scarring, especially 
around the fourth ventricle, thereby improving CSF circulation in 
revision surgeries. MRI findings showing segmentation or thick-
ening of the arachnoid space at the craniocervical junction suggest 
that these patients may benefit more from arachnoid dissection. 
However, some opponents argue that manipulating the arachnoid 
membrane during first-time surgeries may promote the formation 
of scar tissue, and the dissection itself increases the risk of CSF-
related complications. Chotai et al.64 reported a study of 30 CMI 
patients who underwent PFDD combined with arachnoid dissec-
tion, with more than 90% of patients experiencing symptom im-
provement postoperatively. However, it should be noted that the 
CSF-related complication rate was high, with a 30% incidence of 
pseudomeningocele (23%) and CSF leakage (7%).64 Recent ap-
plications of intraoperative neurophysiological monitoring (such 
as somatosensory evoked potentials and brainstem-evoked poten-
tials) in PFDD have shown additional value in deciding whether to 
perform arachnoid dissection.65 Although large-scale case studies 
are lacking, Grossauer et al.66 reported a case of a CMI patient 
whose somatosensory evoked potentials significantly improved 
only after arachnoid dissection.

Currently, there remains debate among scholars regarding wheth-
er surgical manipulation of the cerebellar tonsils is necessary. His-
topathological examination of the resected cerebellar tonsil in CMI 
patients has revealed varying degrees of gliosis and Purkinje cell 
loss in the herniated portion of the cerebellar tonsils. In a small num-
ber of cases, the distal part presented with cystic changes, which 
are believed to result from compression or trauma to the cerebellar 
tonsils, providing a histological basis for managing the cerebellar 
tonsils.67 Moreover, according to the current understanding of CMI 
pathogenesis, management of the cerebellar tonsils serves two pur-
poses: reducing the conflict between brain parenchyma and the vol-
ume of the posterior fossa and enhancing cerebrospinal fluid flow at 
the craniocervical junction to mitigate syrinx formation.

The main approach to managing the cerebellar tonsils involves 
coagulation, partial resection, and suspension.68–70 No compara-
tive randomized controlled studies have yet been conducted to 
determine whether different treatments of the cerebellar tonsils 
affect the outcome of PFDD. Lou et al.71 reported a study of 130 
CMI patients with syringomyelia who underwent partial resection 
of the herniated cerebellar tonsils (even without bony decompres-
sion), and postoperative symptoms improved to varying degrees 
in all patients. In seven cases with concurrent syringomyelia, the 
syrinx reduced in size.68 Galarza et al.69 reported that the “3R” 
approach (repositioning, coagulation shrinkage, and partial resec-
tion of the cerebellar tonsils) could improve outcomes for some 
CMI patients. In 2023, Braga et al.70 retrospectively reviewed 437 
CMI children to assess the efficacy and safety of different surgi-
cal techniques for cerebellar tonsils. Patients underwent various 
procedures, including PFDD, PFDD with arachnoid dissection, 
PFDD with cerebellar tonsil coagulation, and PFDD with subpial 
resection. Their findings showed that tonsil reduction techniques 
resulted in better syringomyelia reduction compared to arachnoid 
dissection alone, without significant differences in complications 
or reoperation rates.70

In our institute, Prof. Zhao proposed the application of cerebel-
lar tonsil suspension (CTS), which involves suspending the cer-
ebellar tonsils to the margin of the reconstructed dura via sutures 
on the basis of cerebellar tonsil coagulation (a step-by-step demon-
stration is shown in Fig. 4).34 This method, combined with PFDD, 
can alleviate the relative anatomical narrowing of the posterior 

fossa while mitigating symptoms associated with tonsillar hernia-
tion and reducing the size of associated syringomyelia. Compared 
to cerebellar tonsil resection and coagulation alone, this approach 
minimizes structural brain damage, reduces injury to surround-
ing vessels through direct visualization, and provides more solid 
support to alleviate herniated cerebellar tonsils.34 In our study, pa-
tients undergoing PFDD with CTS showed significantly greater 
cerebellar tonsil elevation (mean 7.06 ± 2.42 mm) compared to 
those with PFDD alone or PFDD with CTC (2.85 ± 1.45 mm and 
1.57 ± 1.35 mm, respectively), indicating a more definite and sta-
ble elevation of the cerebellar tonsils that contributed to symptom 
relief.34 Moreover, this method led to a notable improvement in 
syringomyelia, with a significant reduction in syrinx width and 
an increased percentage of reduction compared to other surgical 
regimens, making it an effective approach to improving patient 
outcomes while maintaining a less invasive strategy compared to 
cerebellar tonsillar resection.34

Timing and approach for syrinx shunting
The timing and approach for syrinx shunting in CMI is another 
critical area of debate. Syringomyelia is commonly associated with 
CMI and can cause progressive neurological deficits if left untreat-
ed. The first-line treatment for a syrinx is typically PFDD, which 
aims to restore normal CSF flow and promote syrinx resolution. 
In most cases, PFDD alone is sufficient, and the syrinx decreases 
in size or even resolves without further intervention.48 However, 
in some cases, where the syrinx persists or continues to enlarge 
despite successful decompression, syrinx shunting may be consid-
ered.72 Shunting involves placing a catheter to drain the syrinx into 
the subarachnoid space, pleural space, abdominal cavity, or other 
areas, reducing pressure and preventing neurological deterioration. 
The timing of shunting is crucial; prophylactic shunting may lead 
to complications such as catheter obstruction, infection, or injury 
to the spinal cord, while delayed intervention can result in irre-
versible neurological damage. Some surgeons recommend close 
monitoring with serial MRIs following decompression, reserving 
shunting for cases with persistent or symptomatic syringomyelia 
that do not respond to PFDD.49 Overall, the decision to perform a 
shunting procedure should be individualized, based on the progres-
sion of symptoms and the response to decompression, to optimize 
outcomes while minimizing risks.49

Innovative advancements in surgical techniques
Recent literature suggests that endoscopy in CMI has made sig-
nificant progress, particularly in PFD. Endoscope-assisted PFD, as 
detailed by Mobbs and Teo in 2001, offers advantages over tradi-
tional microsurgery by improving visualization and reducing tis-
sue damage, leading to fewer complications and faster recovery.73 
Fully endoscopic PFD, proposed by Staribacher et al.,74 has prov-
en effective for certain patients by enhancing safety through surgi-
cal navigation and intraoperative monitoring, minimizing trauma, 
and shortening hospital stays. Dolaş et al. also demonstrated the 
successful application of fully endoscopic techniques in CMI, 
showing promising outcomes in symptom relief and decreased 
complication rates.75,76 These endoscopic advancements provide 
a minimally invasive approach to treating CMI, underscoring their 
potential to improve clinical outcomes.

Limitations
Although this review summarizes the surgical strategies for CMI, 
it is also subject to several limitations. Firstly, as a narrative re-
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view, it lacks a systematic review of the existing literature across 
different databases, which may lead to biases due to the potential 
omission of relevant research. The original and secondary statisti-
cal analyses are limited and cannot draw solid conclusions about 
CMI surgical strategies. Secondly, the review does not involve a 
thorough discussion of complicated CMI associated with crani-
ocervical instability. Additionally, most of the current studies on 
surgical strategies in CMI are single-center, retrospective, and 
unstandardized, making it challenging to statistically compare 
the clinical efficacy and potential risks of different surgical ap-
proaches. Therefore, future research should focus on large-scale, 
multicenter, prospective, and standardized randomized-controlled 
trials to compare different surgical approaches and facilitate the 
standardization of CMI surgical treatment.

Conclusions
CMI is a complex condition characterized by the downward hernia-
tion of cerebellar tonsils, leading to the impairment of CSF flow. Its 
varied clinical manifestations in adults, along with a lack of con-

sensus on standard surgical approaches, highlight the need for in-
dividualized surgical strategies. Surgical approaches such as PFD, 
dura splitting, and PFDD are the primary options. Among these, 
PFDD seems to hold the middle ground due to its combination of 
higher clinical efficacy and manageable complications. However, 
the decision-making regarding the three techniques, with their dif-
ferent intradural procedures, should be based on symptom severity, 
radiological findings, associated abnormalities, and patient-specific 
factors. Future studies should also investigate the clinical efficacy of 
atlantoaxial fixation, syrinx shunting, and endoscopic PFD.
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